hMutSbeta is required for the recognition and uncoupling of psoralen interstrand cross-links in vitro.

نویسندگان

  • Nianxiang Zhang
  • Xiaoyan Lu
  • Xiaoshan Zhang
  • Carolyn A Peterson
  • Randy J Legerski
چکیده

The removal of interstrand cross-links (ICLs) from DNA in higher eucaryotes is not well understood. Here, we show that processing of psoralen ICLs in mammalian cell extracts is dependent upon the mismatch repair complex hMutSbeta but is not dependent upon the hMutSalpha complex or hMlh1. The processing of psoralen ICLs is also dependent upon the nucleotide excision repair proteins Ercc1 and Xpf but not upon other components of the excision stage of this pathway or upon Fanconi anemia proteins. Products formed during the in vitro reaction indicated that the ICL has been removed or uncoupled from the cross-linked substrate in the mammalian cell extracts. Finally, the hMutSbeta complex is shown to specifically bind to psoralen ICLs, and this binding is stimulated by the addition of PCNA. Thus, a novel pathway for processing ICLs has been identified in mammalian cells which involves components of the mismatch repair and nucleotide excision repair pathways.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Pso4 mRNA splicing and DNA repair complex interacts with WRN for processing of DNA interstrand cross-links.

DNA interstrand cross-links (ICLs) are perhaps the most formidable lesion encountered by the cellular DNA repair machinery, and the elucidation of the process by which they are removed in eukaryotic cells has proved a daunting task. In particular, the early stages of adduct recognition and uncoupling of the cross-link have remained elusive principally because genetic studies have not been highl...

متن کامل

Cho Endonuclease Functions during DNA Interstrand Cross-Link Repair in Escherichia coli.

DNA interstrand cross-links are complex lesions that covalently link both strands of the duplex DNA. Lesion removal is proposed to be initiated via the UvrABC nucleotide excision repair complex; however, less is known about the subsequent steps of this complex repair pathway. In this study, we characterized the contribution of nucleotide excision repair mutants to survival in the presence of ps...

متن کامل

A damage-recognition protein which binds to DNA containing interstrand cross-links is absent or defective in Fanconi anemia, complementation group A, cells.

A DNA binding protein with specificity for DNA containing interstrand cross-links induced by 4,5',8-trimethylpsoralen (TMP) plus long wavelength ultraviolet (UVA) light has been identified in normal human chromatin. Protein binding to DNA was determined using a gel mobility shift assay and an oligonucleotide containing a hot spot for formation of psoralen interstrand cross-links. Specificity of...

متن کامل

Recombinational and mutagenic repair of psoralen interstrand cross-links in Saccharomyces cerevisiae.

Psoralen photoreacts with DNA to form interstrand cross-links, which can be repaired by both nonmutagenic nucleotide excision repair and recombinational repair pathways and by mutagenic pathways. In the yeast Saccharomyces cerevisiae, psoralen cross-links are processed by nucleotide excision repair to form double-strand breaks (DSBs). In yeast, DSBs are repaired primarily by homologous recombin...

متن کامل

NEIL1 responds and binds to psoralen-induced DNA interstrand crosslinks.

Recent evidence suggests a role for base excision repair (BER) proteins in the response to DNA interstrand crosslinks, which block replication and transcription, and lead to cell death and genetic instability. Employing fluorescently tagged fusion proteins and laser microirradiation coupled with confocal microscopy, we observed that the endonuclease VIII-like DNA glycosylase, NEIL1, accumulates...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 22 7  شماره 

صفحات  -

تاریخ انتشار 2002